Experiences with Object Oriented Parallel Plasma PIC Simulations

Viktor K. Decyk

Physics Department, University of California, Los Angeles (UCLA),
Los Angeles California, 90024-1547, USA
and Jet Propulsion Laboratory/California Institute of Technology,
Pasadena, California 91109, USA

Charles D. Norton and Boleslaw K. Szymanski

Department of Computer Science, AnLos Eaton Hall
Rensselaer Polytechnic Institute, Troy, New York, 12180-8590,USA

1 Introduction

The Numerica Tokamak Project is a High Performance Computing project involv-
ing nine institutions, sponsored by the U. S. Department of Enecrgy!.Its goal is
to model a fusion energy dcvice known as a tokamak in order 1o understand and
predict the transport of particles and energy in these devices. Tokamaks, which
arc toroidal in shape, confine the plasma with a combination of an external toroidal
magnetic field and a self-gcmcev-atcd poloidal magnetic field. The plasina confinement
in these devices is not well understood aud is worse than desired.

One of the two computer models used in this project is a gyrokinetic code,
which is a reduced particle-in-cell (PIC) code that follows the trajectories of guid-
ing centers of particles, neglecting the rapid rotation around the magnetic field.
Particle-in-Cell codes integrate the trajectories of many particles subject to elec-
tromagnetic forces, both external and sell-gencrated. These forces are calculated
from a set of field equations (usually Maxwell’s equations or a subset) on a grid.
The particle’s coordinates are described by continuous variables. The source terms
in Maxwell’s equations (charge and/or current density) are calculated on a grid by
inverse interpolation. After the field equations have: been solved on the grid, the
forces on the particles arc found by interpolation from the grid.

The size of the computation required is very large. For the tokamaks of interest,
the number of cells required is about .500x 500x 128 or 1000x 1000x 128. Since one
necds at least 10 particles per cell to obtain reasonable! statistics, the code must be
capable of following at least several hundred million particles over thousands of time
steps. The only computers currently capable of handling such large problems are
the Massively Parallel Processors (MPPs), thus parallel computing is an important
aspect of the Numerical Tokamak Project. There are other aspects which make
the project complex. These include management of large amounts of data and its
visualization, collaboration among widely scattered scientists, and an increasing
desire to add more realism.

This project is too ambitious to be completed by one individua and requires
alarger team. As a result, we have increased our collaboration with computer

1

Table 1: Fortran 77 and Fort ran 90 Compat ative Examples

Fortran 77 Code Segment Fortran 00 Code Segment
dimension part(idim,np) use plasina_module

dimension fx(nx) type (species) :: electrons, ions

data qm,gbm,dt /-1.-1 .,.2/ type (fields) :: charge-density, efield
callpushl(part,qbm,eke,idiin,np,fx,nx,dt) | real ::dt = .2

call dpostI(part,qm,idim,np,q,nx) call plasma-push1 (elect rons,efield,dt)

call plasimna_dyost1 (electrons, charge-density)

F90 Derived Type for Complex F90 Declaration of Complex Variable

type complex
real :: X,y type (complex) ¢
end type complex

scientists and others who have the expertise that is required for the success of this
project. This talk will focus on onc such collaboration with computer scientists at
Renssclacr Polytechnic Institute in Troy, Ncw York.

2 Object Oriented Concepts for Fortran Users

Since the Numerical Tokamak project is large and anbitious, several members of
this project and others arc exploring the usefulness of object-oriented techniques in
managing large, complex PIC codes*®4. Our usc of these techniques is currently
exploratory, designed to learn how to usc them eflectively and to understand what
their main value (if any) is. As part of this exploration, wc converted several PIC
codes from their origina Fortran 77 to C+-+ and to Fortran 90.

C++ as an object-oriented language has been attracting attention in the physics
community for some time now5 However, it is not commonly known that Fortran90
also supports many object-oriented features, in addition to its more well-known
array processing feat ures®. Since many physicists are familiar with Fortran, we
thought it might be useful to illustrate some of the most important concepts of
object-oriented programming by referring to Fortran. Unfortunately, the vocabulary
used by Fort, ran 90 and C++ for the same concepts differs. Thus for each concept,
we provide the terminology used by both languages.

Table 1 shows a few typical lines from a Fortran 77 particle code. The pushi
subroutine advances the particles, whose coordinates are stored in the array called
part, by interpolating from the electric field array cqlled f X, using the time step
dt. The arguments in the subroutines pass information about the particles and
fields, such as the array names, their dimensions, and constants such as the charge
and charge/mass ratio for the particles. It would make the code clearer if al the
information about particles were stored together with one name (encapsulated),
and dl the information about fields in another, and we could aways refer to them
together, as shown in the Fortran 90 code in Table 1.

TFortran 90 allows for encapsulation of data using derived types (which are

2

called structures in C). Fortran 77 natively supports a number of data types such
as integer, real, complex, and character. In Yortran 90, one can add arbitrary data
types. Table 1 shows a complex type and the declaration of a complex variable c.
In this nmnncr, wc can define a species type to represent particles. This species
type could contain the particle array, and al the const ants which describe particles,
such as their charge and their number into a single structure. We can do the same
for fields.

This is al nice, but how do wc tell the Fortran program about this ncw data
type? The Lest way is to put the definition of this new type into what Fortran 90
cals a module. This module can then be “used” in other procedures. This is like
an include file in Fortran 77, except the ‘{module file” is not external. Furthermore,
Fortran 90 dots not natively know how to opcrate on the new data type. The user
must define these operations in procedures (such as the new plasma_pushl). Thus it
makes sense to put these ncw procedures in the same iodule which defines the ncw
data type. This idea of combining ncw data structures with the procedures which
can operate on thcm is central to the idea of object oriented programming, and is
caled a class in C++. Data types and procedures within a module arc accessible
only to procedures which usc the module. For added safety, some items iu a module
can be further restricted as private where t he data t ypcs arc accessible only from
within defining modul€’s procedures. This is caled encapsulationin C++.

Note that the modules contain the data type definition, but they do not neces-
sarily contain the data (the variable) itself. In the example above, wc have declared
two variables of type fields and species in the main program. The actual variable
is caled an object (or an instantiation of the class) in C++.

It is useful to allow a hierarchy of modules. For example, for the fields module,
which knows about the fields data type, onc can include all the procedures which
operate only on fields, but not on particles, eg. setting the initial charge density
data to zero. Similarly, the species module can include procedures which operate
only on data of type specics, such as assigning initial particle coordinates. However,
the procedure plasma_pushl needs to know about both species and ficlds, so wc can
construct another module, called plasma, which contains procedures that operate
on both. This new plasma module can obtain inforination about t he species and
ficlds data types and procedures by using the species and fields modules. This is
caled inheritance in C++. Onc can aso use (or inherit) selectively a portion of the
module.

In Fortran, an operation is evaluated differently depending on the type of the
operands. For example, a/b will give a diflerent result if a and b are integers than if
they arc real or complex. Fortran 90 extends this concept to derived types. Thus it
is possible 1o have a generic push subroutine, which will operate different ly on ions
than on electrons. This is done by declaring ions and electrons to be of different
derived types and defining what proccdurc the generic push will execute for each
type. Such generic functions are called virtua functions in C+-t.

Converting a code from Fortran 77 to Fortran 90 using these concepts resulted
ina main program that is very simple and elegant. Subroutines (inany of which wc
placed in modules) underwent miuor changes. This new organizat ion simplifies the
addition of new features, such as those required for parallel processing.

3

Table 2: IBMRS6000 Sequential aad IBM SP2 1'arallel Benchmarks
ID Sequential Benchmark - 450,000 Particles

Foriran 77 245.49s |Tortran 90 364.25s | C++_ 508.005
3D Parallel Benchmark - 7.962 .624 Particles
Fortran 77 1649.00s [Fortran 90 * N/A | C++ 2797.00s |

3 Program Design with Object-Oriented Techniques

The object-oricmtccl paradigim encourages an application based view of programming
1o emphasize clarity and reuse of software components. When properly designed,
classes for sequential computations can be extended directly for use on MPP archi-
tectures (with the support of additiona classes). For example, the sequential codes
have no support for message passing or managing distributed data. We added a
virtual parallel machine classto provide object-bawd communication consistently
across various MPP architectures. The sequential field class was reused aud ex-
tended with new operations to support distributed data. This included routines
to replicate and transport border field data to neighbor processors to reduce ofl-
processor references. Additionally, classes which contain distributed data now have
access to partition objects which maintain border i information. Integrating such
features into the parallel codes was straightforward since the components of the
program were clearly defined by encapsulation.

C++4 provides features beyond object-oriented techniques to support program-
ming, such as templates. Template classes use objects as parameters in their def-
inition. Wc used templates to represent the plasma particles and the distributed
field to simplify moving from two to three-dimensiollal C++ codes. By redefining
our particle class as avector template class, we can specify particles as vectors in
any dimension. Vector operations on particles can then remained” unchanged when
moving to higher dimensional codes; only the template parameter specifying the
dimension of the particle is required at compile-time. The definition of multidimen-
sional data structures can be handled itithe same manner. This kind of modeling
would bedifficult to emulate in Fortran.

4 Performance Issues

Table 2 shows simple benchmark cases of a orie-dimensional sequential and
three-dimensional parallel plasma code. The Iortran 90 sequential code accesses
particle data through module functions corresponding to the C++ code usc of class
member functions. Since these calls were not inlined in our Fortran 90 program, this
contributed significantly tothe performance overhead observed. Reorganization of
the code to make this data directly accessible reduced the Fortran 90 execution
time slightly below that of the Fortran 77 program. Regarding the parallel three-
dimensional Fortran 77 and C++ codes, we believe that Fortran 90 and HPF may
improve perfortnance over C++ and improve reuse and clarity over Fortran 77.

4

b Conclusions

There are a number of benefits of the object-oriented approach. One ohvious ben-
efit is that the code looks much simpler ancl easier to read. Part of this clarity
arises because details of procedures can be hidden. A further advantage is that it
becomes easy to add ncw data types and operations without causing unintended
side-effects, since data and associated operations on the data arc encapsulated in
classes (or modules). Thus extending or modifying the code becomes much easier.
This encourages experimenting with new ideas and results in better science. An-
other advantage is enhanced collaboration. If different scientists or groups can agree
on common data structures and associated procedures, then code development can
proceed independently without fear of incompatibility y.

Oue of the disadvantages of the object-oriented approach, is the effort needed
to learn new ways of doing things. Another is degraded performance, but for large
projects the advantages of increased clarity and modifiability of the programs often
outweigh these disadvantages.

Of the two object-oriented approaches investigal cd, C+ -t has some advantages
compared 1o Fortran 90. There is a large community of practitioners to help in
learning the new approach. It is also more modern and introduces more ncw ideas.

However, Fortran 90 also has a number of advantages. It is back ward compatible
with Fortran 77, so the transition is casicr, and one can proceed incrementally,
without disruption or great investments in recoding. It supports nigh level array
constructs, which are useful in physics. 11 is closcl,y related to High Performance
Fortran and thus is a natural migration path to parallel computers. Fortran 90
generally produces code which executes faster. Finally, the environment is more
stable (because it is standardized and not rapidly evolving).

Acknowledgments

The first author is supported by NASA HPCC,NSF and DOE. The remaining
authors are supported by the NASA Graduate Student Researches Program.

References

1.B. |. Cohen, ct. al. Computer Physics Communications ,87(1&2):1- 15, May |1 1995.

2. C. D. Norton, B. K. Szymanski, and V. K. Decyk. To eppear in Communications
of the ACM, 38(10), October 1995.

3. J. V. W. Reynders, D. W. Forslund, P. J. Hinkes, M. Tholburn, D. G. Kilman, and
W. F. Humphrey. Computer Physics Comamunications, 87(1&2):212- 224, May H
1995.

4.J. P. Verboncoeur, A. B. Langdon, and N. T.Gladd. Computer Physics Communi-
cations, 87(1&2):199- 211, May 11 1995.

5. B. Stroustrup. The C++ Programming Language. Addison. Wesley, Reading, MA,
second edition, 1991.

6. T. M. R. Ellis, I. R. Philips, and T. M. Lahey. For-b-an 90 Programming. Addison-
Wesley, Reading, M. A., 1994.

o

